
Cradlecore MVC 1.0
Documentation

February, 2012
Written by A. Soto.

Table of Contents
Requirements ..2
Installation...2
Create an application...3
Application structure...4
Application file..5
Create a module...9
Modules structure..9
Routes file...10
Views...12
Frames...13
Composite..13
Extending configurations..14
Assets..16
HTTP...17

URLs...17
Redirects..17
Headers..17

Params...18
Environments configuration..19
Module configuration..20
Cache...21
Mobile Devices...23
Appendix...24

1

Requirements

• PHP 5 >= 5.2, tested only in PHP 5.2 and 5.3
• Apache with mod_rewrite module enabled. For ubuntu mod_rewrite configuration

check this links : http://www.ghacks.net/2009/12/05/enable-mod_rewrite-in-a-ubuntu-
server/ and http://httpd.apache.org/docs/2.2/howto/access.html
Most hosting providers provides this configuration.

• PHP memcache extension installed and enabled, if you are going to use the cache
addon, you will need to have this extension enabled. Please check the cache section.

Installation

To install cradlecore mvc you will need to check if your apache mod_rewrite module is
installed and enabled and configured to let you use .htaccess file in linux environments or
any other file in windows environments, see .htaccess on windows that let you use rewrite
rules in specific folders in your server root.

The next step is download the compressed file from sourceforge. Extract the contents in a
location where the php include_path can reach. For example in the PEAR directory
(recommended when you need to share the library between multiple applications) or relative
location to your future application in your apache server.

As you can see in the file downloaded, there are two files named: cradlecore and
cradlecore.bat, the first one, is a cli tool for linux environments and the second one a cli tool
for windows. This tools can help in the creation of projects and projects modules.

To use the command line tools you will need to register the path where those files are
located in your operative system PATH environment variables.

For linux, you have to execute in command line the following commands, this change will be
temporal if you type this command directly in the command line:

export PATH=$PATH:library location

example: export PATH=$PATH:/var/www/sourceforge/cradlecoremvc

2

http://www.ghacks.net/2009/12/05/enable-mod_rewrite-in-a-ubuntu-server/
http://www.ghacks.net/2009/12/05/enable-mod_rewrite-in-a-ubuntu-server/
http://httpd.apache.org/docs/2.2/howto/access.html

Or to make this change permanent try to add the same command line to the hidden .bashrc
or .bash_profile (filename depends on linux distro) files located in your user home directory.
Try closing the commandline and loading again, when the cradlecore command be typed it
will be recognized.

In windows environment is a little bit different, execute the following command in command
line:

SET PATH=%PATH%;library location

example: SET PATH=%PATH%;C:\wamp\www\cradlecoremvc

To make this change permanent on windows operative systems, the cradlecoremvc path
should be added in environment variables. For windows xp, check this link
http://support.microsoft.com/kb/310519 .

With those configurations you can execute from command line the command cradlecore

Create an application

To easy create an application use the following command inside your apache http root
directories as following:

cradlecore create project ProjectName

This command will generate a directory called ProjectName with the neccesary files to start
creating the application.

3

http://support.microsoft.com/kb/310519

Application structure

The application structure follows a very simple archetype easy to understand.

ProjectName
├─assets
├─configuration
├─modules
├─.htaccess
├─htaccess.txt
└─index.php

• assets = Folder to store files such as static files, css, js and many others.
• configuration = Where application.json and routes.json are located.
• modules = Folder where application modules are created.
• htaccess = Apache rewrite rules for the index.php in order to redirect the traffic to it
• htaccess.txt = Apache rewrite rules alternative for the index.php in order to redirect

the traffic to it.
• index.php = File to listen the traffic coming to the application path, if you see in line

5, there is the absolute path to reach the library, when the application is moved to
different environment, this path should be changed where the library is located.

4

Application file

The application.json file is located in the application configuration folder, is one of the main
configuration files that is required to use the framework. Can be configured at parent module
level and child module level.

For example:

{
 "name": "Webapp",
 "environment": "development",
 "environments": {
 "development": {
 "db_host": "127.0.0.1",

 "db_name": "dev_employees"
 },
 "production": {
 "db_host": "domain.org",
 "db_name": "employees"
 }
 },
 "modules_configuration": {

 "base": {
 "frame": "html5",
 "title": "Main Page",
 "type": "MainLayout",
 "config": {
 "requiresLoggedUser": false,
 "children": {
 "header": {
 "type": "Header"
 },
 "footer": {
 "type": "Footer"
 }
 }
 }
 },

 "index": {
 "extends": "base",

5

 "config": {
 "children": {
 "content": {
 "type": "Login"
 }
 }
 }
 },

 "admin_index": {
 "extends": "index",
 "title": "Welcome Admin",
 "config": {
 "children": {
 "subcontent": {
 "type": "Admin",
 "config": {
 "adminUsers": ["admin", "editor", "boss"]
 }
 }
 }
 }
 },

 "admin": {
 "extends": "base",
 "config": {
 "requiresLoggedUser": true,
 "children": {
 "content": {
 "type": "Admin",
 "action": "validator"
 }
 }
 }
 }

 }

}

6

The following table shows the meaning of the objects and fields of the application.json

FIELD TYPE DESCRIPTION
name string Name used when application

is created with the command
line tool

environment string Represents the current
application environment based
on application environments
defined in environments
object

environments object Represents all the available
environments by default when
application is created are 2
available environments objects
called development and
production . Configuration
values in the environments are
user defined except the cache
object. See cache section.

modules_configuration object Specified all the modules
configurations exposed for
parent modules or for routes
mapping.
A module is parent if its is on a
high level than other modules
relative to its configuration
tree.

{instance_name_key} string Is a custom name user defined
for the module that will be
instanced
e.g : In the application.json
showed above, the keys
“index”, “base”, “content”,
“header” and “footer”

Module instance configuration:

FIELD TYPE DESCRIPTION
type string Is the module name of the

module to be implemented by
the instance.

config object Instance configuration object

7

title string Represents the page title, is
user defined, and it only can
be set only for top parent
modules instances in
application.json or in the top
parent instances that extends
from other parent instance

frame string Defining this field and passing
a value: html5 or xhtmlStrict,
the base view will use an html5
or xhtml markup layout.
And also the developer will
be able to add css, js or
other blob data dinamically
from the controller.
Is used in modules that are
located in the top of the tree as
shows the application.json
above.

extends string Extends another instance to be
used as a base for the current
instance, is a good practice to
avoid objects reconfigurations.

The config object :

FIELD TYPE DESCRIPTION
children string Specifies the children modules

for the current module. Those
childrens specify also the type
and config for each one,
children is a reserve word in
configuration file.

{configuration_key} any Key is user defined, the same
as the value that will contain.

8

Create a module

To create an application module, first enter in console in the application folder, use the
following commands inside your apache http root directories as following for both cases, linux
and windows:

Enter into project folder:

 cd ProjectName

And then :

cradlecore create module ModuleName

This command will generate a directory called ModuleName

Modules structure

ModuleName
├─assets
├─models
├─views
└─controller.php

• assets = Folder to store files such as static files, css, js and many others for an
specific module.

• models = Folder to store specific module models by default module.php is created an
associated to the controller's property model . By default is created a method called
getData, where you can include some of existing logic.

• views = Where the views are located by default index.view.php is created and
associated to the controller's index action method.

• controller.php = The module's controller by default is created an index action
method.

9

Routes file

The routes.json file in the application configuration directory is used to map the urls to
application.json modules instances for example:

{
 "entry_point": "/Webapp/",
 "url_mappings": {

 "index_page": {
 "verbs": ["get"],
 "path": "/",
 "call": "index.index"
 },

 "index_page2": {
 "verbs": ["get"],
 "path": "/login/:user/",
 "call": "index.index"
 },

 "admin_page": {
 "verbs": ["get"],
 "path": "/admin",
 "call": "admin.index"
 }

 }
}

Routes mapping object fields and values:

FIELD TYPE DESCRIPTION
entry_point string Entry point (url path or path

section) where the application
will be accessed for example if
the application is located in the
root's top location of the
hosting or local apache the
entry point should be “” . If the
application is located in a

10

htdoc folder called “Webapp”
the entry point should be
“/Webapp/” .

url_mappings object Group of routes mapping, each
route has to have an user
defined key. For example in
the routes.json showed above
the values "index_page",
"index_page2" and
"admin_page" .

Mapping object:

FIELD TYPE DESCRIPTION
verbs string array Array of http methods that will

support the mapping. For
example “get”, “post”, “put”,
etc.

path string The relative path to the entry
point where route is going to
be mapped

call string It makes reference to the
instance defined in
application.json and also
makes reference to the
controllers action method that
will be called.

11

Views

The view has a naming convention:
{controller_action_method}.{mobile_device_id => optional }.view.php

• controller_action_method = Is the action method that the view will make reference, if
an action method called login is used it will make reference to a view called
login.view.php .

• mobile_device_id = The device id based on the defined devices.json file entries, see
devices section.

To see how to implement mobile devices views check mobile devices section.

To create the view manually, take care of this convention. When a module is created by
default the index.view.php view is created. This view is referencing the controller's action
method called index that also is created when module is created.

The following code snippets illustrates how to pass values from controller to view:

As the snipped shows below you have to call the method done and pass an associative array
with the keys and values that you want to pass to the view

<?php

/**
 * Description of AdminController
 *
 * @author alejandro.soto
 */
class AdminController extends CradleCoreController {

 public function __construct() {

 }

 /**
 * Index action method
 *
 */
 public function index() {

12

 $data = $this->model->getData();
 $this->done(array('name' => 'Someone', 'somedata' => $data));
 }

}

?>

In the view, just only call the method get specifying the key of the value that will be echoed

<h1>Admin</h1>
<?php echo $this->get('name') ?>

Frames

Frames are a kind of html layout, it enables to add assets such as javascripts, css, metadata,
etc.

Composite

A composite module instance is a module configured with one or more children modules in
the application.json configuration file. Also it requires to be called from the parent view.

As the following snippet illustrates, the composite module requires one or more children, in
this case the composite module is the module instance called “base” because contains 2
children module instances called “header” and “footer” . Also those 2 modules can be
composite modules.

{
 "name": "Webapp",
 "modules_configuration": {

 "base": {

13

 "frame": "html5",
 "type": "MainLayout",
 "config": {
 "children": {
 "header": {
 "type": "Header"
 },
 "footer": {
 "type": "Footer"
 }
 }
 }
 }

 }
}

In the parent's(“base” type “MainLayout”) module view, the children shoud be called with the
function called child , this function receive the user defined key for the child instance that is
on application.json .

For example:
MainLayout view

<div>
 <?php echo $this->child('header') ?>

 <?php echo $this->child('content') ?>

 <?php echo $this->child('footer') ?>
</div>

Extending configurations

14

Extend from another module instance is very useful when reuse the same layout is required,
many times the content of the page is the only section that will change between all the site's
pages, and the header and footer will be repeated, in this case this can be configured in the
application.json

The following snippets illustrates how module instances “index” and “admin” extends from the
module instance named “base”. This means that index will show index contents but extending
header and footer from “base” instance. The same case applies for “admin” instance.

{
 "name": "Webapp",
 "modules_configuration": {

 "base": {
 "frame": "html5",
 "type": "MainLayout",
 "config": {
 "children": {
 "header": {
 "type": "Header"
 },
 "footer": {
 "type": "Footer"
 }
 }
 }
 },

 "index": {
 "extends": "base",
 "config": {
 "children": {
 "content": {
 "type": "Login"
 }
 }
 }
 },

 "admin": {
 "extends": "base",
 "config": {
 "children": {

15

 "content": {
 "type": "Admin"
 }
 }
 }
 }

 }

}

Assets

Assets stuff like css, javascript and others are very important in every web application. In our
application structure there are to places to store assets, in the application root /assets and in
the module folder /modules/ModuleName/assets The controller provide us an addon to add
assets in run-time which is called assets object. It can be referenced as the following snippet
illustrates:

Where the first parameter is the path inside the application or also it can be a full url pointing
to external asset. In addBlob function case the first parameter should be a metadata markup
for example.
The second parameter is to specify the location where the tag should be positioned 'top' or
'bottom' .

public function index() {
 $data = $this->model->getData();
 $this->assets->addCss('/modules/Login/assets/index.css');
 $this->assets->addJs('/modules/Login/assets/index.js');
 $this->assets->addJs('/modules/Login/assets/index.js', 'bottom');
 $this->assets->addBlob('<meta http-equiv="cache-control" content="no-cache" />');
 $this->done(array('name' => 'Someone', 'somedata' => $data));
 }

To view an API reference of this functionality see this
http://sourcetek.org/projects/cradlecore-mvc/api-docs/

16

http://sourcetek.org/projects/cradlecore-mvc/api-docs/

HTTP

URLs

Internal links in web applications using mvc are very common. The framework expose an
addon method to deal with this issue.

For example, the following snippet print an url link in a view to the index page, the method url
receives the path as the parameter, this method can also be called from the controller.

<h1>Footer</h1>
<a href="<?php echo $this->http->url('/') ?>">test

Redirects

Redirects can be done with the controller's http addon function called redirect, it receives the
url as parameter.

$this->http->redirect('http://google.com');

Headers

Headers can be retrieved and set using the http addon. To retrieve the current request
headers the function getHeaders can be called and it will return an associative array with the
request headers.

$headers = $this->http->getHeaders();

To set a response header the following function can be used :

17

$this->http->setHeader('Cache-Control: no-cache, must-revalidate');

Params

As you know parameters can be passed within the url or in the POST request body, the
framework also exposes the addon called params which let you read the parameters passed
in the query string, in the path or in the request body.

For example if you want to pass a parameter called user in the path, the path should be
specificied in the route definition in routes.json as the following snippet illustrates:

"index_page2": {
 "verbs": ["get"],
 "path": "/login/:user/",
 "call": "index.index"
}

And in the controller just the addon method getParamFromUrl should be called :

<?php

/**
 * Description of LoginController
 *
 * @author alejandro.soto
 */
class LoginController extends CradleCoreController {

 public function __construct() {

 }

 /**
 * Index action method
 *

18

 */
 public function index() {
 $this->done(array('name' => 'Someone', 'username' => $this->params-
>getParamFromUrl('user')));
 }

}

?>

To read the query string params and read values from the body you should use the function :

$param = $this->params->getParam('key')

To view an API reference of this functionality see this
http://sourcetek.org/projects/cradlecore-mvc/api-docs/

Environments configuration

Environments variables are values that can be set in the application.json file, environments
are defined in the environments object as you can see in the snippet below. Differents
values for the same keys can be defined changing between the available environments with
the environment value

Environments variables are shared between all the controllers in the application and it can be
read as the following snippet illustrates how to retrieve the value in development environment
called db_host :

Controller code snippet :

$db_host = $this->AppConfig->db_host;

Application.json code snippet :

{
 "name": "Webapp",

19

http://sourcetek.org/projects/cradlecore-mvc/api-docs/

 "environment": "development",
 "environments": {
 "development": {
 "db_host": "127.0.0.1",

 "db_name": "dev_employees"
 },
 "production": {
 "db_host": "domain.org",
 "db_name": "employees"
 }
 },
 "modules_configuration": {

 ...

 }
}

Module configuration

Also the values defined for an specific module can be read from the controller, for example
using a module , requiresLoggedUser is configuration variable user defined

{
 "name": "Webapp",
 "environment": "development",
 "environments": {
 "development": {

...

 },
 "production": {

...

 }
 },
 "modules_configuration": {

 "admin": {

20

 "type": "Admin",
 "config": {
 "requiresLoggedUser": true,
 }
 }
 }

 }

}

Those configuration variables that can be configured from instance definition in the config
object in the application.json can be read in the controller for example using a similar code :

$requiresLoggedUser = $this->config->requiresLoggedUser;

Cache

Use memcached server is a common practice in websites that require high performance. This
framework provides the addon called cache . It requires the php memcache extension
enabled and also requires an additional configurations in the environments objects in the
application.json to get it working. To see how to install the memcache extension in php check
this http://php.net/manual/en/memcache.installation.php .

As you can see in the code application.json below, a cache object has to be defined in the
application configuration, this object requires two properties the memcached server host and
the port where the server is running. If the framework detect that extension is not available it
or can connect to memcached server the framework will throw an error . The cache object in
application configuration is exclusive and cannot be used for other configuration value.

{
 "name": "Webapp",
 "environment": "development",
 "environments": {
 "development": {
 "cache": {

21

http://php.net/manual/en/memcache.installation.php

 "host": "127.0.0.1",
 "port": 11211
 }
 },
 "production": {
 "cache": {
 "host": "127.0.0.1",
 "port": 11211
 }
 }
 },
 "modules_configuration": {

…

 }
}

As you read there is an addon called cache exposed to cache data in the application
controller and can be explicitly used as the following code shows:

To store data the following function can be used passing a key, data, and the timeout in
seconds as optional parameter.

$stored = $this->cache->store($key, $data, 60);

To retrieve data the following function can be used passing the data key.

$value = $this->cache->retrieve($key);

The following function will clean and remove all the data stored in memcached server.

$flushed = $this->cache->reset();

22

Mobile Devices

Cradlecore MVC also supports mobile devices, it provides a simple json configuration named
devices.json located inside the application configuration directory. The mobile supports
covers a controller addon to provide mobile detection manually based on the devices.json
configuration and covers the views, for example if there is a logic for an index module, it is
independent from its rendering so the only component that will change are the views.

File devices.json:

This file is located in configuration directory and it is created when the project is created, can
be change whenever the developer needs, it contains the mobile_device_id and for each id
one or more user agents (also can be a part of the device user agent. For example iPhone; is
a section of the iphone's user agent and it will match when the framework receives an
iphone's request, the same happened with the other definitions).

{
 "iphone": [
 "iPhone;"
],
 "ipad": [
 "iPad;"
],
 "android": [
 "Android"
],
 "blackberry": [
 "BlackBerry"
],
 "webos": [
 "webOS"
]
}

Devices table :

FIELD TYPE DESCRIPTION
mobile_device_id string Identifies each mobile

configuration. It is used to
create the mobile views. See
views section.

23

mobile_device_useragents string array Array of user agents or
portions of user agents to
validate if the requestor device
is mobile or not.

Mobile Views:

The views for mobile devices have to be created manually relative to the default
index.view.php. Based on the above devices.json sample you can create a view for iphone,
ipad, androd, blackberry and webos called for example index.iphone.view.php,
index.ipad.view.php, index.android.view.php, index.blackberry.view.php and
index.webos.view.php, as you read this file can be modified and more devices can be
added. With this functionality the developer can create different markups for each devices.
Take care of the views convention, see views section. If no view was created for a devices
definition by default the default view will be used.

Controller device addon:

In order to detect which devices is making the request the addon called device can be used
for retrieve the mobile_device_id, if is not a valid devices the getDeviceName() function will
return null but if it is valid the mobile_device_id will be returned

$deviceName = $this->device->getDeviceName();

Another controller addon function that can be called is the isDevice() function, it return false or
true.

$isDevice = $this->device->isDevice();

Appendix

.htaccess on windows
Windows by default does not accept files without name so we will need to use a file with
different name, for example htaccess.txt

To use htaccess.txt as an .htaccess file you need to setup your httpd.conf file located in the
folder of the apache installation and add the following line and save:

24

AccessFileName htaccess.txt

25

